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Diffusive dynamics of protein folding studied by molecular dynamics simulations
of an off-lattice model

A. Baumketner* and Y. Hiwatari
Faculty of Science, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan

~Received 12 March 2002; published 12 July 2002!

We report the results of a molecular dynamics study on the kinetic properties of a small off-lattice model of
proteins. The model consists of a linear chain of monomers interacting via a number of potentials. These
include hydrophobic, bond-angle, and torsion potentials. The ground-state conformation of the studied model
is a b-sheet motif. Molecular dynamics simulations focused on the time evolution of the reaction coordinate
measuring the similarity of a given conformation with the native state. Folding time for the studied model is
calculated following the diffusive-rate formula of Bryngelson and Wolynes@J. Phys. Chem.93, 6902~1989!#
by using a computed separately configurational diffusion coefficient. Comparison of the folding time with the
mean-first passage time obtained directly from folding simulations shows that the approximation depicting the
dynamics of the reaction coordinate in protein folding as a diffusive motion on a free-energy landscape is
quantitatively correct for the studied model.
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I. INTRODUCTION

Within the framework of the energy landscapes theo
folding of a protein can be regarded as a stochastic mo
on a multidimensional statistically averaged free-energy s
face @1#. The protein free-energy surface has a funnel-l
structure when defined in terms of a few appropriately c
sen reaction coordinates or order parameters. Although
funnel multidimensionality may prove important for larg
proteins, a recent study focused on lattice protein model
the smaller proteins@2# revealed that a single reaction coo
dinate suffices in most cases to reasonably describe
folding dynamics. Protein motion on the energy landsca
can be regarded to a first approximation as diffusive. T
reaction coordinate then obeys the Brown equation of mo
characterized by a single parameter, the configurational
fusion constantD @3#. Coefficient D along with the free-
energy profiles are the two factors that fully determine fo
ing time within the diffusive dynamics formalism throug
the known diffusive-rate formula@3#. Being just an approxi-
mation, the analytical diffusion-equation theory of the pr
tein folding has a solid physical foundation deriving from t
random energy model@4#. It was also shown to be correct i
recent numerical tests@5# that employed simulations per
formed by the Monte Carlo method for a lattice prote
model. The lattice simulations, however, suffer from at le
two well-known problems that make interpretation of th
results difficult. First, due to the steric constraints presen
discretized spaces, closely packed structures of pro
monomers may not be adequately represented in lattice m
els. This situation was observed by Tanakaet al. in molecu-
lar dynamics simulations of polyampholytes@6#. Second,
there is an ambiguity in common approaches of how to m
Monte Carlo moves onto physical time. As was demonstra
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by Chan and Dill, kinetic sequences of events, as well as
energy profiles, simulated on a two-dimensional homopo
mer lattice strongly depend on the adopted move set@7#. In
view of these difficulties it is interesting to test the applic
bility of the physically motivated and robust idea of the d
fusive dynamics by using more realistic methods and m
els.

In this paper we report a molecular dynamics study on
kinetics of a short off-lattice model of proteins. The bas
architecture of our model was borrowed from the model
troduced by Honeycutt and Thirumalai@8#, which turned out
to be quite successful recently@9#. Protein is modeled as a
linear chain of monomers placed at the positions ofCa .
Monomers can occupy any point in the phase space
making the chain devoid of the steric constraints proble
Also, the second problem quoted above is no longer pre
since within the molecular dynamics method~in this paper
Langevin dynamics! there is no difficulty in interpreting the
simulation time steps.

Our protein model can contain either hydrophobic re
dues that attract each other via a Lennard-Jones potenti
neutral monomers that interact via repulsive soft-core fo
only. A total of 16 monomers connected by fixed virtu
bonds were considered; four of them are neutral and all
rest are assumed to be hydrophobic. Aside from the hyd
phobic force other interactions operating among the mo
mers are bond-angle and torsion potentials. Ground-s
conformation of the designed heteropolymer, or the nat
state, is ab-sheet motif. For the model we computed fre
energy profiles along a reaction coordinatex measuring the
extent of similarity between a given conformation and t
native state as a function of temperature. Diffusion coe
cient D was computed directly from the Brown equation f
the reaction coordinate by integrating the time correlat
function of the force acting on variablex at time t and the
value of this variable at time zerox(0). Availability of both
energy landscapes and configurational diffusion constant
abled us to calculate folding time numerically due to t

s,
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analytical formula of Bryngelson and Wolynes@3#. Compari-
son of this result with the mean-first passage time compu
directly in folding simulations shows that the diffusion
equation approximation to the dynamics of the reaction
ordinate produces a quantitatively correct prediction of
folding time for the studied protein model. At temperatur
slightly higher than the folding temperatureTf , the diffusion-
equation generated folding timet f that differs from that ob-
tained in folding simulations by no more than a factor of
At T,Tf the two folding times almost coincide.

The plan of the paper is as follows. In Sec. II we brie
describe the protein model used in the present simulati
Section III details our kinetical results obtained for the stu
ied model and in Sec. IV we give the final conclusions.

II. OFF-LATTICE PROTEIN MODEL

To simulate the folding dynamics we consider a sim
off-lattice protein model based on the model introduced
Honeycutt and Thirumalai@10#. Over the last few years thi
model has been shown to reproduce satisfactorily most b
aspects of folding kinetics as well as thermodynamics@9#.
The protein is considered to be a linear chain of monom
placed at the positions ofCa and linked one to another b
bonds of fixed length. The monomers can be either hyd
phobic ~H! or neutral~N! depending on whether they attra
each other or repel. Among a total of 16 monomers con
ered four are neutral and the rest are hydrophobic. Hyd
phobic monomers experience mutual attraction described
a Lennard-Jones potential,

VH~r i j !54ehF S s

r i j
D 12

2S s

r i j
D 6G , u i 2 j u>2, ~1!

wherer i j is the distance between monomersi and j and the
parameters was chosen to be equal to the bond length
tween neighboring monomers, 3.8 Å , for simplicity. Pa
of neutral and neutral-hydrophobic monomers are taken
interact via a repulsive soft-core potential:

VH,N~r i j !54ehS s

r i j
D 12

, u i 2 j u>2. ~2!

In the simulations the strength of the hydrophobic forceeh
was adopted 2@kcal/mol#, which is in good agreement with
experiment@11#. Throughout the paper we will use the un
of eh to measure energy and that ofeh /kb to measure tem-
perature, wherekb is the Boltzmann constant.

In addition to the hydrophobic force, all monomers a
also subject to the harmonic bond-angle potential:

VB~Q!5
kQ

2
~Q02Q!2, ~3!

and torsion potential:

VT~f!5A~12cosf!1B~12cos 3f!. ~4!

HereQ is the angle formed by two consecutive virtual bon
andQ0 is the equilibrium value of the bond angle set to
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75°. The bond-angle parameterkQ was taken to be
20 @eh /Rad2#. By f we denote the angle between the tw
planes formed by three consecutive molecule’s bonds. T
potential has three minima favoring onetrans conformation
at f50° and twogaucheconformations atf56120°. In
regions on the chain where a turn is supposed to form,
put two neutral monomers and set the constantsA50 and
B50.5 @eh# for the quartets comprising these two mon
mers to make the energy of thetrans andgaucheconforma-
tions equal. Otherwise, we choseA5B51.5 @eh# in order
to give an energy advantage to thetransstate over itsgauche
counterparts. The monomer sequence of the designed m
is H3NH3N2H3NH3. Its ground state, or native conformatio
is a b-sheet motif, as shown in Fig. 1.

For the model under consideration a series of Lange
dynamics simulations@13# aimed to study thermodynamica
properties were performed at a few selected temperatu
The use of the Langevin dynamics method in the pres
work is motivated by the fact that this algorithm genera
trajectory in the canonical ensemble and, more importan
provides a means to account for the influence of the solv
degrees of freedom through the stochastic term. The la
property is most desirable in studies that aim to treat pro
dynamics. The friction coefficient taken in the equations
motion was about ten times lower than the friction expe
enced by an alanine molecule placed in water at room t
perature@14#. By employing a lower friction coefficient we
were able to considerably diminish the required compu
tional time without introducing any bias to the final results;
is known that the folding kinetics in minimal off-lattice mod
els depends linearly on the solvent viscosityh in media with
h as high as that of water@15#.

During the simulations, histograms of potential ener
and joint histograms of potential energy and an order par
eterx were collected. Here the structural overlapping para
eterx, defined as@16#

FIG. 1. Native state of theb-sheet model considered in th
present study. Dark balls refer to the hydrophobic residues and
light denote the neutral residues. Picture was generated with
help of theGOPENMOL program@12#.
5-2



m

s-
te

es
am
he

d

in
e

l-
al

o
de

is
r

di
s

-
n
d

r-
t

in

t

-
ree
e

nt
nt
ay

r
y

ns

ance

th

e
ion
-

lar
as

a-
ter
on
re

s
at
we

res.
s,
ate

s is

hat
be-
ils

only

c
h

ho
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x5
2

~N21!~N22! (
i 51

N22

(
j 5 i 12

N

Q~e2ur i j 2r i j
Nu!, ~5!

measures the extent of similarity between a given mono
conformation$rW i% and the native state$rW i

N%. Parametere,
taken to be 0.2s in our simulations, accounts for the permi
sible fluctuations around the native state such that the pro
is still considered folded.Q in the above expression denot
the Heaviside step function. It is easily seen that the par
eter x is a generalization into continuous space of t
fraction-of-native contacts order parameterQ, commonly
used in lattice studies@3,17#. For folded states at nature
conditions,x approaches unity, while for denatured states
goes to zero. By using the multiple histogram reweight
technique@18# we computed from the accumulated in th
simulations data the specific heatCv and the susceptibility
function of the order parameterDx5^x2&2^x&2. In Fig. 2
we showCv andDx as a function of temperature. The re
evance of these two functions to the thermodynamics an
sis rests on the means they provide for the identification
the structural transitions that occur in the present mo
Specifically, the peak position of specific heatTc indicates
the well-known heteropolymeric collapse transition. Th
transition is accompanied by a rapid decrease of the ove
size of the molecule, as measured, for example, by the ra
of gyration. Another transition identified from Fig. 2 take
place at a temperatureTf given by the position of the maxi
mum of susceptibility. This is a so-called folding transitio
that signifies the protein structural change from a multitu
of nonspecific collapsed states atT.Tf into a set of a few
conformations with very high similarity to the native confo
mation atT,Tf . It was shown earlier by simulations tha
the minimum time required for a protein to fold is found
the vicinity of Tf @19–21#.

III. RESULTS AND DISCUSSION

Following Bryngelson and Wolynes@3# we assume tha
the dynamics of the structural overlap functionx is governed
by the Brown equation,

FIG. 2. Specific heat and susceptibility of theb-sheet motif
studied in the present work. Symbols denote the results of the
nonical simulations performed at selected temperatures. Lines s
the data calculated by the multiple histogram reweighting met
@18#.
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ẋ~ t !5bDF@x~ t !#1dR~ t !, ~6!

whereb51/kbT, D is the configurational diffusion coeffi
cient, anddR(t) is the stochastic force exerted on the deg
of freedomx. Here we assume a further simplification to th
original diffusion equation of Ref.@3# by neglecting the de-
pendence ofD on the reaction coordinatex. It was noted
earlier that this approximation is rather crude@5#, especially
at high values ofx. Nevertheless, we use it in the prese
work partially in order to test how it works for the prese
model and partially because there is no straightforward w
of evaluatingD(x) directly from simulations. The regula
force that appears in Eq.~6! is related to the free-energ
profile U(x) along the reaction coordinate as

F@x#52
]U~x!

]x
. ~7!

The free-energy funnel is easily available in simulatio
from the distribution functionP(x) of the order parameterx
asU(x)52kbT log@P(x)#. Stochastic forcedR in Eq. ~6! is
modeled as a Gaussian noise with a zero mean and vari
^dR2&52D. dR taken at a momentt is neither correlated
with its value at any previous time nor is it correlated wi
the reaction coordinatex at any time, including timet. By
multiplying Eq.~6! by x(0) and taking statistical average w
can derive an equation for the time autocorrelation funct
F(t)5^x(t)x(0)&. Integration of this equation yields an ex
pression for the diffusion constant,

bD52
F~1`!2F~0!

E
0

`

C~ t !dt

52
Dx

E
0

`

C~ t !dt

, ~8!

where we defined the time correlation function of the regu
force at timet and the reaction coordinate at time zero
C(t)5^F@x(t)#x(0)&. Equation ~8! provides a means to
compute configurational diffusion from numerical simul
tions. Once the distribution function of the order parame
P(x) at a given temperature is known, the time correlati
functionC(t) can be easily evaluated. It is worth noting he
that since the only input quantity to Eq.~8! is the trajectory
of x(t), the above approach of computingD is equally ap-
plicable to both off-lattice minimal models of proteins a
well as to fully microscopic macromolecular models th
take into account every atom of the system. In Fig. 3
display the time correlation functionC(t) calculated for the
present protein model at a number of different temperatu
All the curves in this figure have negative initial value
which means that the force acting on the reaction coordin
and the reaction coordinate itself are anticorrelated. Thi
understandable since the generalized forceF(x) tends to re-
store equilibrium whenever the variablex deviates from its
mean valuê x& given by the conditionF(^x&)50. Hence,
F@x# and x must have opposite signs. Figure 3 shows t
functionsC(t) calculated at all temperatures above and
low Tf have long-decaying tails. These slowly decaying ta
are specific signatures of arrested dynamics that comm
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arise in disordered materials, particularly in supercooled
uids and glasses@22#. They are an interesting subject for
theoretical study especially in the context of the protein fo
ing problem. More detailed study of the relaxation functio
C(t) andF(t) will be presented elsewhere@23# and here it
is enough to note that the relaxation rate ofC(t) decreases
gradually with temperature. That means the absolute valu
the integral from the denominator of Eq.~8! grows with T.
Using the time correlation functions shown in Fig. 3 a
following Eq. ~8! we calculated the configurational diffusio
constantD. It is shown in Fig. 4 as a function of invers
temperatureb. The diffusion coefficient is a monotonicall
decreasing function ofb, thereby reflecting the fact that it i
more difficult for the molecule to change conformations a
lower temperature, where the dynamic mechanism of tr
ping in local minima starts to be prevalent. At sufficient
low temperaturesT,Tf , configurational dynamics clearl
obeys the Arrhenius law, as can be seen from Fig. 4. AT
.Tf , the dependence ofD on temperature becomes no

FIG. 3. Time correlation functionC(t) of the regular force act-
ing on variablex with this variable itself, computed as a function
temperature. Number next to each curve denotes the correspon
temperature.

FIG. 4. Configurational diffusion coefficientD computed for the
studied protein model as a function of the inverse temperature
01190
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Arrhenius. This behavior is in good agreement with the p
vious simulation study of diffusive protein dynamics pe
formed for lattice models@5#.

The configurational diffusion coefficient describes t
ruggedness of the energy landscapes or, in other words,
freely the chain can jump among local minima and ma
transitions among strata of conformational subspaces
have, common degree of similarity to the native state. A
other factor that influences the dynamics of the reaction
ordinate is the energy landscape itself, or more specifica
its gradient. The free-energy profile determines the syst
atic tendency ofx to drift towards the global minimum
Combined with the information onD it predicts folding time
for a diffusive motion on the rugged energy surface acco
ing to a formula derived by Bryngelson and Wolynes@3#

t f5
1

DE
xun f

x f ol
dxE

0

x

dyeb[U(x)2U(y)] , ~9!

wherexun f is the structural overlap in the unfolded, andx f ol
in the folded ensembles. In our simulations we took a va
of x50.3 to be characteristic of unfolded states and tha
x50.9 to represent fully folded molecules. The free-ene
profiles computed for the present protein model by using
histogram reweighting technique@18# are shown in Fig. 5.
For temperatures aboveTf50.59, the free-energy curve ha
one minimum that corresponds with the unfolded state. Fo
ing in this case is uphill and thus requires a considera
time. At temperatures around the folding temperature,
free-energy surface has two minima at low and high val
of x with each minimum corresponding to the folded a
unfolded states, respectively. This type of the free-ene
surface indicates that the folding transition in the pres
model is a first-order like. The free-energy barrier that t

ing

FIG. 5. Free-energy profiles computed for the studied prot
model at varying temperatures. The data were obtained by appl
the histogram reweighting routine@18#.
5-4
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protein has to overcome on its route to the native stat
small, however, up tokbT in magnitude at the transition
temperatureTf . It is unlikely that this small barrier may
serve as a time-limiting step in the folding of the prese
model. More plausibly, folding in our case is controlled e
clusively by the diffusive process atT;Tf . At low tempera-
tures the folding reaction is entirely downhill as can be se
in Fig. 5 and the folding time is again determined byD
alone.

By numerical integration of Eq.~9! we calculated the
folding time for the present model ofb protein. It is shown
in Fig. 6 along with the mean-first passage timetMFP . The
mean-first passage time was calculated as follows. Fro
simulation at temperatureT51 an ensemble of 500 mono
mer configurations was generated over sufficiently long ti
intervals to avoid statistical correlation. At this high tempe
ture the structural overlapx is about 0.3, i.e., sufficiently
small. The chain then populates mostly expanded confor
tions and we can assume that the set of these conforma
reproduces the unfolded ensemble of the protein. From e
of these initial states a folding simulation at the target te
perature was initiated. The simulation was halted as soo
x reached its maximum value 1, and the time of the fi
passage was recorded. Final value fortMFP was averaged

FIG. 6. Folding time~in time steps! calculated due to formula
~9! and the mean-first passage time computed for the studied m
in folding experiments.
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over all 500 independent trajectories. To check the accur
of the final result the array of the initial configurations w
doubled to reach 1000 and the whole simulation process
peated. The resultingtMFP did not differ visually from the
one shown in Fig. 6. It can be seen from Fig. 6 that t
analytical formula~9! produces an overall very good agre
ment with the result of the direct simulation. The curve
t f(T) reproduces quite well the main trends of the mean-fi
passage time, especially slowing down at low and high te
peratures. At high temperaturesT.Tf , the values of botht f
and tMFP differ by no more than two times. At lower tem
peratures the agreement is even better, where the two fol
times almost coincide. The conclusion that we are natur
led to draw here is that the diffusive dynamics on the fre
energy funnels picture devised by Bryngelson and Woly
for proteins is quantitatively correct when applied to t
present protein model. This is a rather surprising res
given all the serious approximations made to derive Eq.~5!,
especially the negligence of the diffusion coefficient dep
dence onx. Nevertheless, Fig. 6 clearly shows that the d
namics of the reaction coordinate can be satisfactorily
scribed by the Brown equation~6!.

IV. CONCLUSIONS

In this paper we applied the molecular dynamics meth
to study kinetical properties of a small off-lattice prote
model. We focused on the dynamics of the reaction coo
natex that measures similarity between a given conform
tion and the native state. By using direct evaluation of
configurational diffusion constantD we have shown that the
dynamics ofx can be satisfactorily described by the diffu
sive Brown equation, as suggested by Bryngelson
Wolynes@3#. Folding time calculated from the diffusive-rat
formula and the mean-first passage time calculated in si
lations directly agree to within a factor of 2 over a wid
range of temperatures. Particularly good agreement is
served at lower temperatures, below the folding transitio
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